Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 892: 164565, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37270012

RESUMO

While geogenic arsenic (As) contamination of aquifers have been intensively investigated across the world, the mobilization and transport of As from anthropogenic sources have received less scientific attention, despite emerging evidence of poor performance of widely used risk assessment models. In this study we hypothesize that such poor model performance is largely due to insufficient attention to heterogeneous subsurface properties, including the hydraulic conductivity K and the solid-liquid partition (Kd), as well as neglect of laboratory-to-field scaling effects. Our multi-method investigation includes i) inverse transport modelling, ii) in-situ measurements of As concentrations in paired samples of soil and groundwater, and iii) batch equilibrium experiments combined with (iv) geochemical modelling. As case study we use a unique 20-year series of spatially distributed monitoring data, capturing an expanding As plume in a Chromated Copper Arsenate (CCA)-contaminated anoxic aquifer in southern Sweden. The in-situ results showed a high variability in local Kd values of As (1 to 107 L kg-1), implying that over-reliance of data from only one or few locations can lead to interpretations that are inconsistent with field-scale As transport. However, the geometric mean of the local Kd values (14.4 L kg-1) showed high consistency with the independently estimated field-scale "effective Kd" derived from inverse transport modelling (13.6 L kg-1). This provides empirical evidence for the relevance of using geometric averaging when estimating large-scale "effective Kd" values from local measurements within highly heterogenous, isotropic aquifers. Overall, the considered As plume is prolonged by about 0.7 m year-1, now starting to extend beyond the borders of the industrial source area, a problem likely shared with many of the world's As-polluted sites. In this context, geochemical modelling assessments, as presented here, provided a unique understanding of the processes governing As retention, including local variability in, e.g., Fe/Al-(hydr)oxides contents, redox potential and pH.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Sedimentos Geológicos/química , Água Subterrânea/química , Suécia , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 889: 163764, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207761

RESUMO

Microbial sulfate reduction (MSR), which transforms sulfate into sulfide through the consumption of organic matter, is an integral part of sulfur and carbon cycling. Yet, the knowledge on MSR magnitudes is limited and mostly restricted to snap-shot conditions in specific surface water bodies. Potential impacts of MSR have consequently been unaccounted for, e.g., in regional or global weathering budgets. Here, we synthesize results from previous studies on sulfur isotope dynamics in stream water samples and apply a sulfur isotopic fractionation and mixing scheme combined with Monte Carlo simulations to derive MSR in entire hydrological catchments. This allowed comparison of magnitudes both within and between five study areas located between southern Sweden and the Kola Peninsula, Russia. Our results showed that the freshwater MSR ranged from 0 to 79 % (interquartile range of 19 percentage units) locally within the catchments, with average values from 2 to 28 % between the catchments, displaying a non-negligible catchment-average value of 13 %. The combined abundance or deficiency of several landscape elements (e.g., the areal percentage of forest and lakes/wetlands) were found to indicate relatively well whether or not catchment-scale MSR would be high. A regression analysis showed specifically that average slope was the individual element that best reflected the MSR magnitude, both at sub-catchment scale and between the different study areas. However, the regression results of individual parameters were generally weak. The MSR-values additionally showed differences between seasons, in particular in wetland/lake dominated catchments. Here MSR was high during the spring flood, which is consistent with the mobilization of water that under low-flow winter periods have developed the needed anoxic conditions for sulfate-reducing microorganisms. This study presents for the first time compelling evidence from multiple catchments of wide-spread MSR at levels slightly above 10 %, implying that the terrestrial pyrite oxidation may be underestimated in global weathering budgets.


Assuntos
Água Doce , Enxofre , Isótopos de Enxofre/análise , Sulfatos/metabolismo , Água
3.
Sci Total Environ ; 822: 153510, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35101483

RESUMO

Water bodies provide essential ecosystem services linked to morphometric features that might differ between natural lakes and reservoirs. We use the HydroLAKES global dataset to quantitatively compare large (area > 1 km2) reservoirs and natural lakes in terms of scaling exponents between morphometric measures (volume, area, shore length). These exponents are further compared to those expected from geometrical assumptions and constraints. Lakes cover a larger range of volumes for the same range of surface areas than reservoirs, and have a larger volume-area scaling exponent. The volume-area scaling exponent for reservoirs (but not natural lakes) and the area-shore length exponent for all water bodies follow the predictions for self-affine surfaces. Land cover and terrain influence the scaling relations more for lakes than for reservoirs. These morphometric differences may be used to model the impact of reservoirs and lakes on hydrological processes and associated ecosystem services at regional to global scales.


Assuntos
Ecossistema , Lagos
4.
Environ Pollut ; 292(Pt B): 118478, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752789

RESUMO

Laboratory experiments and point observations, for instance in wetlands, have shown evidence that microbial sulfate reduction (MSR) can lower sulfate and toxic metal concentrations in acid mine drainage (AMD). We here hypothesize that MSR can impact the fate of AMD in entire catchments. To test this, we developed a sulfur isotope fractionation and mass-balance method, and applied it at multiple locations in the catchment of an abandoned copper mine (Nautanen, northern Sweden). Results showed that MSR caused considerable, catchment-scale immobilization of sulfur corresponding to a retention of 27 ± 15% under unfrozen conditions in the summer season, with local values ranging between 13 ± 10% and 53 ± 18%. Present evidence of extensive MSR in Nautanen, together with previous evidence of local MSR occurring under many different conditions, suggest that field-scale MSR is most likely important also at other AMD sites, where retention of AMD may be enhanced through nature-based solutions. More generally, the developed isotope fractionation analysis scheme provides a relatively simple tool for quantification of spatio-temporal trends in MSR, answering to the emerging need of pollution control from cumulative anthropogenic pressures in the landscape, where strategies taking advantage of MSR can provide viable options.


Assuntos
Mineração , Sulfatos , Ácidos , Enxofre , Isótopos de Enxofre/análise
5.
J Hydrol Reg Stud ; 38: 1-18, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35529522

RESUMO

Study region: Selenga River Delta (SRD), Russia. Study focus: How is water occurrence changing in the SRD, and what are the hydroclimatic drivers behind these changes? The presence of water on the surface in river deltas is governed by land use, geomorphology, and the flux of water to and from the Delta. We trained an accurate image classification of the Landsat satellite imagery during the last 33 years to quantify surface water occurrence and its changes in the SRD. After comparing our estimations with global-scale datasets, we determined the hydrological drivers of these changes. New hydrological insights for the region: We find mild decreases in water occurrence in 51% of the SRD's surface area from 1987-2002 to 2003-2020. Water occurrence in the most affected areas decreased by 20% and in the most water-gaining areas increased by 10%. We find a significant relationship between water occurrence and runoff (R2 = 0.56) that does not exist between water occurrence and suspended sediment concentration (SSC), Lake Baikal's water level, and potential evapotranspiration. The time series of water occurrence follows the peaks in the runoff but not its long-term trend. However, the extremes in SSC do not influence surface water occurrence (R2 < 0.1), although their long-term trends are similar. Contrary to expected, we find that the Delta has a relatively stable long-term water availability for the time being.

6.
Sci Total Environ ; 712: 135560, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050393

RESUMO

Heavy metal and metalloid contamination of topsoils from atmospheric deposition and release from landfills, agriculture, and industries is a widespread problem that is estimated to affect >50% of the EU's land surface. Influx of contaminants from soil to groundwater and their further downstream spread and impact on drinking water quality constitute a main exposure risk to humans. There is increasing concern that the present contaminant loading of groundwater and surface water systems may be altered, and potentially aggravated, by ongoing climate change, through large-scale impacts on recharge and groundwater levels. We investigated this issue by performing hydrogeological-geochemical model projections of changes in metal(loid) (As and Pb) mobilization in response to possible (climate-driven) future shifts in groundwater level and fluctuation amplitudes. We used observed initial conditions and boundary conditions for contaminated soils in the temperate climate zone. The results showed that relatively modest increases (0.2 m) in average levels of shallow groundwater systems, which may occur in Northern Europe within the coming two decades, can increase mass flows of metals through groundwater by a factor of 2-10. There is a similar risk of increased metal mobilization in regions subject to increased (seasonal or event-scale) amplitude of groundwater levels fluctuations. Neglecting groundwater level dynamics in predictive models can thus lead to considerable and systematic underestimation of metal mobilization and future changes. More generally, our results suggest that the key to quantifying impacts of climate change on metal mobilization is to understand how the contact between groundwater and the highly water-conducting and geochemically heterogeneous topsoil layers will change in the future.

7.
Sci Total Environ ; 700: 134531, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31655453

RESUMO

Many natural and man-made urban lakes have been developed under urbanization. A unique feature of these lakes is the lack of an outlet; thus, they are defined as urban closed lakes (UCLs). UCLs are facing unexpected eutrophication under climate change and human activities. Our study assessed the trophic state, assimilative capacity (AC) and pollutant reduction of UCLs under different precipitation frequencies in Wuhan, China based on Carlson's Trophic State Index, assimilative capacity modelling, field investigations and observed data. The UCLs in Wuhan are nearly eutrophic in summer. Three primary nutrient sources are atmospheric deposition, pollutants carried in rainfall and nutrients released by sediments. TN and TP in the UCL water column are primarily contributed by surface runoff. The ACs of TN and TP in 2015 for Lingjiao Lake, Yue Lake, and Houxianghe Lake were 3472.07 kg, 13,800.99 kg, and 2805.58 kg, respectively, and 641.66 kg, 8386.79 kg, and 800.14 kg, respectively. The ACs of TN and TP were much higher at a 25% precipitation frequency (wet year) compared with a 50% frequency, and the lowest AC was observed at a 75% precipitation frequency (dry year). A comparison of the pollution load and AC showed that TN and TP reduction was highest in the dry and wet years, respectively. We found that specific meteorological conditions in the early stage led to the algal bloom. These results can facilitate governmental decision making in the future.

8.
Sci Total Environ ; 704: 135452, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31810688

RESUMO

Wetlands are interconnected with the larger surrounding landscape through the hydrological cycling of water and waterborne substances. Therefore, the borders of individual wetlands may not be appropriate landscape system boundaries for understanding large-scale functions and ecosystem services of wetlandscapes (wetland network - landscape systems), and how these can be impacted by climate and land-use changes. Recognizing that such large-scale behaviours may not be easily predicted by simple extrapolation of individual wetland behaviours, we here investigate properties of 15 Swedish wetlandscapes in the extensive (22 650 km2) Norrström drainage basin (NDB) comprising as many as 1699 wetlands. Results based on wetland survey data in combination with GIS-based ecohydrological analyses showed that wetlands located in wetlandscapes above a certain size (in the NDB: ~250 km2) consistently formed networks with characteristics required to support key ecosystem services such as nutrient/pollutant retention and biodiversity support. This was in contrast to smaller wetlandscapes (<250 km2), which had smaller and less diverse wetlands with insufficient throughflow to significantly impact large-scale flows of water and nutrients/pollutants. The existence of such wetlandscape-size thresholds is consistent with scale-dependent flow accumulation patterns in catchments, suggesting likely transferability of this result also to other regions.

9.
J Environ Manage ; 223: 731-742, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29986320

RESUMO

Catchments are complex social-ecological systems involving multiple, and often competing, interests. Water governance and management regimes are increasingly embracing pluralistic, participatory, and holistic norms as a means to engage with issues of complexity, uncertainty, and value-conflicts. Integrated, participatory approaches are theoretically linked to improved learning amongst stakeholders across sectors and decision-making that is grounded in shared knowledge, experiences and scientific evidence. However, few studies have empirically examined the impacts of an integrated approach to learning and knowledge practices related to water resources. Here, a Swedish sub-catchment that has adopted such an approach in association with implementation of the European Water Framework Directive (WFD) is examined. Interview-based analyses show that WFD implementation has both helped and hindered learning and knowledge practices surrounding both water planning and spatial planning. Whilst communities of practice have developed in the study area, a number of important challenges remain. These include the rigid goal-orientation of the WFD, the fragmentation of knowledge caused by an over-reliance on external consultants, as well as a lack of resources to synthesise information from multiple sources. Present results raise questions regarding the efficacy of the WFD to sufficiently enable the development of learning and knowledge practices capable of handling the complexity, uncertainties and value-conflicts facing catchments in Sweden and elsewhere.


Assuntos
Conservação dos Recursos Naturais , Recursos Hídricos , Monitoramento Ambiental , Suécia , Água , Qualidade da Água
10.
J Contam Hydrol ; 182: 25-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26321419

RESUMO

Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to saturation) far outside the range of results obtained by the rest of the scenarios. This study also addresses potential air trapping by dissolution of part of the initial air content of the bentonite, showing that neglecting gas flow effects and trapping could lead to significant underestimation of the remaining air content and the duration of the initial aerobic phase of the repository.


Assuntos
Bentonita/química , Resíduos Radioativos , Ar , Geologia/métodos , Modelos Teóricos , Suécia , Instalações de Eliminação de Resíduos
11.
PLoS One ; 10(3): e0120015, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789866

RESUMO

Irrigated agriculture can modify the cycling and transport of nitrogen (N), due to associated water diversions, water losses, and changes in transport flow-paths. We investigate dominant processes behind observed long-term changes in dissolved inorganic nitrogen (DIN) concentrations and loads of the extensive (465,000 km2) semi-arid Amu Darya River basin (ADRB) in Central Asia. We specifically considered a 40-year period (1960-2000) of large irrigation expansion, reduced river water flows, increased fertilizer application and net increase of N input into the soil-water system. Results showed that observed decreases in riverine DIN concentration near the Aral Sea outlet of ADRB primarily were due to increased recirculation of irrigation water, which extends the flow-path lengths and enhances N attenuation. The observed DIN concentrations matched a developed analytical relation between concentration attenuation and recirculation ratio, showing that a fourfold increase in basin-scale recirculation can increase DIN attenuation from 85 to 99%. Such effects have previously only been observed at small scales, in laboratory experiments and at individual agricultural plots. These results imply that increased recirculation can have contributed to observed increases in N attenuation in agriculturally dominated drainage basins in different parts of the world. Additionally, it can be important for basin scale attenuation of other pollutants, including phosphorous, metals and organic matter. A six-fold lower DIN export from ADRB during the period 1981-2000, compared to the period 1960-1980, was due to the combined result of drastic river flow reduction of almost 70%, and decreased DIN concentrations at the basin outlet. Several arid and semi-arid regions around the world are projected to undergo similar reductions in discharge as the ADRB due to climate change and agricultural intensification, and may therefore undergo comparable shifts in DIN export as shown here for the ADRB. For example, projected future increases of irrigation water withdrawals between 2005 and 2050 may decrease the DIN export from arid world regions by 40%.


Assuntos
Agricultura , Nitrogênio/análise , Irrigação Agrícola , Mudança Climática , Monitoramento Ambiental , Modelos Teóricos , Rios
12.
Ambio ; 43(7): 914-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24799149

RESUMO

Nutrient loads from inland sources to the Baltic Sea and adjacent inland waters need to be reduced in order to prevent eutrophication and meet requirements of the European Water Framework Directive (WFD) and the Baltic Sea Action Plan (BSAP). We here investigate the spatial implications of using different possible criteria for reducing water-borne phosphorous (P) loads in the Northern Baltic Sea River Basin District (NBS-RBD) in Sweden. Results show that most catchments that have a high degree of internal eutrophication do not express high export of P from their outlets. Furthermore, due to lake retention, lake catchments with high P-loads per agricultural area (which is potentially of concern for the WFD) did not considerably contribute to the P-loading of the Baltic Sea. Spatially uniform water quality goals may, therefore, not be effective in NBS-RBD, emphasizing more generally the need for regional adaptation of WFD and BSAP-related goals.


Assuntos
Oceanos e Mares , Fósforo/química , Poluentes Químicos da Água , Poluição da Água/prevenção & controle , Suécia , Fatores de Tempo , Movimentos da Água
13.
J Environ Manage ; 126: 147-56, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23722150

RESUMO

Contaminant concentrations in various edible plant parts transfer hazardous substances from polluted areas to animals and humans. Thus, the accurate prediction of plant uptake of elements is of significant importance. The processes involved contain many interacting factors and are, as such, complex. In contrast, the most common way to currently quantify element transfer from soils into plants is relatively simple, using an empirical soil-to-plant transfer factor (TF). This practice is based on theoretical assumptions that have been previously shown to not generally be valid. Using field data on concentrations of 61 basic elements in spring barley, soil and pore water at four agricultural sites in mid-eastern Sweden, we quantify element-specific TFs. Our aim is to investigate to which extent observed element-specific uptake is consistent with TF model assumptions and to which extent TF's can be used to predict observed differences in concentrations between different plant parts (root, stem and ear). Results show that for most elements, plant-ear concentrations are not linearly related to bulk soil concentrations, which is congruent with previous studies. This behaviour violates a basic TF model assumption of linearity. However, substantially better linear correlations are found when weighted average element concentrations in whole plants are used for TF estimation. The highest number of linearly-behaving elements was found when relating average plant concentrations to soil pore-water concentrations. In contrast to other elements, essential elements (micronutrients and macronutrients) exhibited relatively small differences in concentration between different plant parts. Generally, the TF model was shown to work reasonably well for micronutrients, whereas it did not for macronutrients. The results also suggest that plant uptake of elements from sources other than the soil compartment (e.g. from air) may be non-negligible.


Assuntos
Hordeum/metabolismo , Modelos Teóricos , Plantas/metabolismo , Poluentes do Solo/farmacocinética , Elementos Químicos , Hordeum/química , Plantas/química , Medição de Risco , Solo/química , Suécia
14.
J Environ Monit ; 14(10): 2780-92, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22976382

RESUMO

Mining and ore excavation can cause the acidification and heavy metal pollution of downstream water systems. It can be difficult to assess the load contributions from individual mining areas, which is commonly required for environmental impact assessments. In the current study, we quantified the net impact of the unmonitored mining activities in the Zaamar Goldfield (Mongolia) on heavy metal transport in the downstream Tuul River-Selenga River-Lake Baikal water systems. We also noted that the Zaamar site shares the conditions of limited monitoring with many rapidly developing regions of the world. The heavy metal concentrations and flow data were obtained from historical measurement campaigns, long-term monitoring, and a novel field campaign. The results indicate that natural mass flows of heavy metals in dissolved form increased by an order of magnitude because of mining. Prevailing alkaline conditions in the vicinity of Zaamar can limit the dissolution, maintaining the on-site concentrations below health-risk based guideline values. However, suspended river concentrations are much higher than the dissolved concentrations. The placer gold mining at the Zaamar site has increased the total riverine mass flows of Al, As, Cu, Fe, Mn, Pb and Zn by 44.300, 30.1, 65.7, 47.800, 1.480, 76.0 and 65.0 tonnes per year respectively. We suggest that local to regional transformation and enrichment processes in combination with suspended sediment transport from numerous existing upstream mining areas contribute to high concentrations of dissolved heavy metals in downstream parts of the Selenga River, including its delta area at Lake Baikal. Furthermore, single hydrological events can increase the suspended load concentrations by at least one order of magnitude. Overall, the Selenga River Basin, which drains into Lake Baikal, should be recognised as one of the world's most impacted areas with regard to heavy metal loads, and it contributes to 1% and 3% of the world flux of dissolved Fe and Pb, respectively.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Mineração , Rios/química , Poluentes Químicos da Água/análise , Ouro , Modelos Químicos , Mongólia
15.
Environ Int ; 37(2): 435-42, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131050

RESUMO

Limited data on the pollution status of spatially extensive water systems constrain health-risk assessments at basin-scales. Using a recipient measurement approach in a terminal water body, we show that agricultural and industrial pollutants in groundwater-surface water systems of the Aral Sea Drainage Basin (covering the main part of Central Asia) yield cumulative health hazards above guideline values in downstream surface waters, due to high concentrations of copper, arsenic, nitrite, and to certain extent dichlorodiphenyltrichloroethane (DDT). Considering these high-impact contaminants, we furthermore perform trend analyses of their upstream spatial-temporal distribution, investigating dominant large-scale spreading mechanisms. The ratio between parent DDT and its degradation products showed that discharges into or depositions onto surface waters are likely to be recent or ongoing. In river water, copper concentrations peak during the spring season, after thawing and snow melt. High spatial variability of arsenic concentrations in river water could reflect its local presence in the top soil of nearby agricultural fields. Overall, groundwaters were associated with much higher health risks than surface waters. Health risks can therefore increase considerably, if the downstream population must switch to groundwater-based drinking water supplies during surface water shortage. Arid regions are generally vulnerable to this problem due to ongoing irrigation expansion and climate changes.


Assuntos
Substâncias Perigosas/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Animais , Arsênio/análise , Ásia Central , Cobre/análise , DDT/análise , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental , Água Doce/química , Saúde , Medição de Risco , Abastecimento de Água/análise
16.
Environ Sci Technol ; 44(6): 2048-55, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20158209

RESUMO

This study develops a general quantification framework for consistent intermodel and intercatchment comparison of the nutrient and pollutant mass loading from multiple sources in a catchment area to downstream surface and coastal waters. The framework accounts for the wide spectrum of different transport pathways and travel times through the subsurface (soil, groundwater, sediment) and the linked surface (streams, lakes, wetlands) water systems of a catchment. The account is based on key flow partitioning and mass delivery fractions, which can be quantified differently by different flow and transport and reaction models. The framework application is exemplified for two Swedish catchment cases with regard to the transport of phosphorus and of a generic attenuating solute. The results show essential differences in model quantifications of transport pathways and temporal spreading, with important implications for our understanding of cause and effect in the catchment-scale nutrient and pollutant loading to downstream waters.


Assuntos
Água Doce/química , Água do Mar/química , Poluentes Químicos da Água/química , Monitoramento Ambiental , Cinética , Modelos Químicos , Nitrogênio/análise , Nitrogênio/química , Fósforo/análise , Fósforo/química , Movimentos da Água , Poluentes Químicos da Água/análise
17.
J Contam Hydrol ; 90(3-4): 240-51; discussion 252-7, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17123662

RESUMO

We consider the results of a recent paper in this journal [Zeru, A. and Schäfer, G., 2005. Analysis of groundwater contamination using concentration-time series recorded during an integral pumping test: Bias introduced by strong concentration gradients within the plume. Journal of Contaminant Hydrology 81 (2005) 106-124], which addresses the field-scale characterisation of contaminant plumes in groundwater. There, it is concluded that contaminant concentration gradients can bias Integral Pumping Test (IPT) interpretations considerably, in particular if IPTs are conducted in advective fronts of contaminant plumes. We discuss implications of this setting and also argue that the longitudinal and transverse dispersivities used in the examples of Zeru and Schäfer (2005) of up to 30 m and 3 m, respectively, are generally very high for the here relevant capture zone scale (<20 m). However, regardless of both longitudinal and transverse concentration gradients, we further show through a counter-example that IPT results are unbiased as long as the concentration attenuation along the flow direction is linear over the capture zone extent.


Assuntos
Modelos Teóricos , Poluentes da Água/análise , Viés , Monitoramento Ambiental , Movimentos da Água , Abastecimento de Água
18.
J Contam Hydrol ; 79(3-4): 107-34, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16085336

RESUMO

Field-scale characterisations of contaminant plumes in groundwater, as well as source zone delineations, are associated with uncertainties that can be considerable. A major source of uncertainty in environmental datasets is due to variability of sampling results, as a direct consequence of the heterogeneity of environmental matrices. We develop a methodology for quantifying uncertainties in field-scale mass flow and average concentration estimations, using integral pumping tests (IPTs), where the contaminant concentration is measured as a function of time in a pumping well. This procedure increases the sampling volume and reduces the effect of small-scale variability that may bias point-scale measurements. In particular, using IPTs, the interpolation uncertainty of conventional point-scale measurements is transformed to a quantifiable uncertainty related to the (unknown) plume position relative to the pumping well. We show that this plume position uncertainty generally influenced the predicted mass flows and average concentrations (of acenapthene, benzene and CHCs) to a greater extent than a boundary condition uncertainty related to the local water balance, considering 19 control planes at a highly heterogeneous industrial site in southwest Germany. Furthermore, large (order of magnitude) uncertainties only occurred if the conditions were strongly heterogeneous in the nearest vicinity of the well. We also develop a consistent methodology for an assessment of the combined effect of uncertainty in hydraulic conditions and uncertainty in reactive transport parameters for delimiting of both contaminant source zones and zones absent of source, based on (downgradient) IPTs.


Assuntos
Monitoramento Ambiental/métodos , Resíduos Industriais , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Benzeno/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Rios/química , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...